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A modification of Pluvinage's method which allows for the use of a great class of Coulomb-poles- 
eliminating correlation factors is proposed. This factors are better suited for the description of electron- 
correlation effects by means of perturbation procedures than the ories used hitherto. 

Introduction 

One of the main difficulties for describing many-electronic systems is to find 
a suitable method to account for electron correlation effects. So far the best results 
were obtained on the ground of straight variational methods based on the mini- 
mization of the energy functional in various, often very elaborated, classes of trial 
functions. But there are also many workers that make attempts to describe 
electron correlation on the ground of the perturbation method. Some of them try 
to do this choosing such a partitioning of the Hamiltonian for which the perturba- 
tion is expected to be small by a formulation, which already in the zero-order 
problem accounts, to some extent, for correlation effects. This direction of attack 
represents, first of all, the methods that may be regarded as the extensions of the 
method proposed by Pluvinage [1]. A review of papers representative for this 
direction has been given by Lebeda and Schrader [2] in their recent paper. A 
substantial different type of perturbation treatment with correlation in zero- 
order was formulated by the present author in 1967 [3] and further work in that 
direction is now in progress. 

In the present paper we should like to propose a modification of Pluvinage's 
method which allows for the use of a great class of Coulomb-poles eliminating 
correlation factors, which are better suited for the description of correlation effects 
by means of perturbation procedures than the ones used hitherto. The method 
presented here may be considered as a generalization of the very recently published 
method of Lebeda and Schrader [2]. It seems that if appropriate correlation 
factors were used it would be possible to obtain a fast converging perturbation 
formulation of the many-electron problem. Some preliminary numerical results 
indicate that progress may be really obtained, Further numerical work is in 
progress, and the results will be published in the nearest future [4]. 

The method proposed here may also be of some importance from another 
point of view. It seems that it allows to obtain some insight into the problem of the 
influence of the electron-electron poles on the convergence of the perturbation 
series which is the matter of several, as yet unproved, opinions. 
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A. Formulation of the Method 

Although a more general formulation is possible we will in the present note 
confine ourselves to two-electron atomic systems for which the formulation of the 
method is especially simple. 

The Hamiltonian of the system may be written as 
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Let us take as the zero-order Hamiltonian Ho that Hermitian operator for 
which the function 

7J(o~) = exp [ -  Z(r 1 + r2) ] q)t')(r12 ) (2) 

(where rl, r 2 and r~2 are the well known variables), is the eigenfunction. Its con- 
struction may be performed e.g. by means of the so-called Sternheimer potential 
method [-5]. After some simple mathematical operations one obtaines 

H(o ~) = H - co (~) -- W (~) , (3) 
where 
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It is now possible to formulate a perturbation procedure using the partitioning 

H = H(o ~) + V (~) , (6) 
where 

V (~) = co (~) + W (~) . (7) 

It is obvious that in that formulation both the zero-order Hamiltonian as well as 
the perturbation V (') are Hermitian operators. We may hence use the well known 
Hylleraas's variational-perturbation theory and seek the corrections to the 
wavefunction in a class of trial functions by the minimization procedure described 
elsewhere [6], e.g. the first-order correction ~ )  we may obtain minimizing the 
functional 

E2 L--lr (g(~)la_\_l-- / (Y(~) I~(~)l,,0 --~0w(~)l, ~ ) )  + 2 (~g(~) I V(~) _ E~,)I ~(d))  , (8) 

where E(o ~) and E(1 ~) are the zero- and first-order energies i.e. 

E l  ~) = ~ ~'(~)"~(~)' ~ ' (~ ) " /~ ' (~ )  I ~o(~)> \ J 0  I ~ I"tO / / \ ~ t O  

If we seek the first-order function in the form 

T (~) = Fp)(rl, r2, r12 ) T(0 ~) (9) 
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the integrals appearing in (8) become very simple, because the functions appearing 
in (4) and (5) in the denominator will be reduced with the correlation factor in (2). 

It is obvious that by different choices of q~(') it is possible to reduce the size 
of the perturbation and try in this way to improve the perturbation calculation. 
But we are now interested in a special class of correlation factors. Some years ago 
the present author together with Wo2nicki [7] showed that when m(')(rlz) is a 
pole-less function it is possible to remove the singularities from the SchrSdinger 
equation with the aid of correlation factors obtained as the solutions of (4) in 
a way being a generalization of the Hirschfelder method [8]. In [7] we presented 
some simple correlation factors useful in atomic and molecular calculations. 
Our results may also be applied to the present perturbation calculation. When 
co (~) is a pole-less function the whole perturbation V (') contains no poles and 
therefore one may use the formalism to the numerical analysis of the influence 
of electron-electron poles on the convergence of the perturbation series. Taking 
into consideration that the solutions of (4) with m(')(raz) under the interest allow 
the function (2) to fullfil the well known cusp conditions, and because in most 
cases (2) is considerable better then the Hartree-Fock function (from the point 
of view of the energy criterion), it is obvious that our 7~(o') is a well adopted function 
to describe correlation effects. 

In [7] we have shown that extraordinary simple functions may be found for 
which (4) is soluble. The most simple are, of course, the constants 

- 1  
co (") = n = 0, 1, 2, . . .  (10) 

4(n + 1) 2 '  

for which the correlation factors get the form 

g0 r176 (u) = exp (u/2), (11 a) 

q~(1) (u) = (1 + �88 u) exp (u/4), (1 lb) 

1 1 2 q~(2)(u) = (1 + xu + ~ u  ) exp(u/6) (11c) 

um 

q~(~)(u)= m=0 m!(m+ 1)! ( l ld)  

The last function is the often used factor of Walsh and Borowitz [9]. A simple 
form of~o (~) may also be obtained when the important factor q)~(r~2)= 1 + 0.5 r12 
is used. We get then ~on(r12)= 1/(2 + r12 ). 

When ~o (~ is of the form (10) it may be separated from the perturbation and 
included in the zero-order energy. Then 

E~o~)~ Eto ~ + ~o (~) , (12) 

and the perturbation simplifies to the form 

V (~)= W (~) �9 (13) 

When the factor (11a) is used W (~) gets the form 

W(~ Z---Ir~---rA+--r22 rlr12 rZ-r~+r~Z-]r2r12 , (14) 

which leads to the zero-order Hamiltonian obtained by Lebeda and Schrader [2]. 
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B. Preliminary Numerical Results and Discussion 

In order to see how the method outlined in A) works we calculated the first- 
order correction to the wavefunction as well as the energy to third order in the 
case of the ground state of the helium a tom basing on the factor (11 b) which in 
the series (11) in the next neighbour of the factor used by Lebeda and Schrader. 
The choice is determined only by the fact that the function (2) obtained with the 
help of this factor is better than the Har t ree-Fock one, when the energy criterion 

Table 1. Perturbation energies to the third order obtained for the helium ground state (in a.u O 

This work Lebeda-Schrader [2] Conventional HSKM-method a 

E o -4.0625 -4.25 - 4  
E 1 1.19106 1.39450 1.25 
Eo+E 1 - 2.87144 -2.85550 -2.75 
E z --0.02980 --0.04644 --0.15767 
E o + E~+E 2 -2.90123 -2.90194 -2.90767 
E 3 -0.00217 -0.00137 0.00435 
Eo + El + E2 + E3 -2.90341 -2.90331 -2.90332 
error b 0.00031) 0-00041) ~.0004~ 

a The results of the conventional Hylleraas-Scherr-Knight-Midtal method. 
b Compared with the "exact" Pekeris [13] result. 

is concerned, while the function with ( l l a )  is not. We hope that there exist the 
pole-eliminating correlation factors which are from the point of view of con- 
vergence properties still better suited for the construction of the zero-order 
problem than the one just employed. An analysis in that direction is now in 
progress. 

When (1 lb)  is used we obtain 

To (1) = {exp [ -  2Z(r l  + r2)]}(1 + �88 exp(r~2/4) (15) 
and 

E(o 1) = - 4.0625 a.u. (16) 

The F function from (9) has get the form 

F(1)(S, t, U) = 2 CklmSkt21um' (17) 
k,l,m 

where s, t, u are the well known Hylleraas coordinates. In the minimization 
procedure we used 20 and 25 termes in (17) but the results, with the accuracy 
indicated in the Tables, were the same. 

In Table 1 we present the perturbat ion energies to the third order. F rom the 
Table 1 it is evident that with our choice of q~(~) it is possible to obtain the third 
order energies, Eo + E l  + E 2  + E3, not only better that the one calculated by 
Lebeda and Schrader but also given by the conventional Hylleraas-Scherr- 
Knight-Midtal  (HSKM) method. This is worth noticing because, to the knowledge 
of the author, all existing perturbat ion calculations for the He ground state 
disclose the same property that, even when the first- and second-order energies 
were better than in the conventional case, the third-order ones were worse see e.g. 
the results given in [10]-[12] .  
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In  Table  2 the first-order expectat ion values of some one- and  two-electron 
operators  f2 are presented. The elements (f2)a are calculated by means  of the well 
k n o w n  first-order formula  

( Q ) .  = (~g(o~)1(2[ kg(o ~)) + 2 (tP(o~)If2 [ ~ ) ) .  (18) 

To  achieve the possibili ty of compar i son  with the results of Lebeda and  Schrader 
we used also the formula  

<O)~ = <~1~21 ~ ) / < ~ [  ~ ) ,  (19) 
where 

k~ = 7J(0~)+ ~ )  (20) 

and  k~ ") is ob ta ined  by the or thogonal iza t ion  of 7J~ ~) to ~(0 ~). The compar i son  of our  
results with their counterpar ts  given in [2] shows that  a considerable  improvement  

Table 2. First-order expectation values of some one-and two-electron operators 

This work b L - S ~ HNSM d Exact ~ 
<Q>oa <Q>, <a>l <~>~ 

rl~ 0.9540 0.9524 0.9558 0.9347 0.9458 
r 12 1.4075 1.4105 1.4027 1.3512 1.4221 
r~- ~ 1.7022 1.6982 1.7051 1.6875 1.6883 
r 1 0.9174 0.9201 0.9158 0.8962 0.9295 
3(r12 ) 0.1113 0.1109 0.1101 0.0090 0.1063 
3(rl) 1.8366 1.8263 1.8389 1.6962 1.8104 

a See Eq. (18). 
b See Eq. (19). 
c Results of Lebeda and Schrader-obtained with formula (19). 
d Ref. [-13], calculated with formula (18). 
~ Ref. [14]. 

may be obtained.  This is of course still more  evident  when one takes under  con- 
s iderat ion the results of the H S K M  method,  also given in the table. 

The results presented in Tables 1 and  2 allow to hope that  by a proper  choice 
of the correla t ion factor a pe r tu rba t ion  t rea tment  of the many-e lec t ron  p rob lem 
may be formulated and  it will have better  convergence propert ies for the energy 
as well as for the expectat ion values of other properties. 
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